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Abstract
We propose modified Bloch equations (MBEs) with specific power-dependent
relaxation and dispersion parameters characteristic for two-pulse excitation and
when the magnetic dipole–dipole interactions in the electron spin system control
the dephasing. We discriminate between the ‘active’ (excited by both pulses)
and ‘passive’ (excited by the second pulse only) spins: it is shown that the
‘active’ spins participate in a new effect, an active spin frequency modulation
effect giving rise to the power-dependent dispersion and multiple electron spin
echoes (ESEs); the ‘passive’ spins contribute to the power-dependent relaxation.
The MBEs are solved and a general expression for the two-pulse ESEs is
obtained. Detailed numerical analysis of this expression gives results in good
quantitative agreement with the recent experiments on the two-pulse ESEs at
conventional low applied fields. The developed theory is applied also to high
field ESEs, which are promising for future investigations. On the basis of
published results it is deduced that the instantaneous diffusion mechanism is
ineffective.

1. Introduction

The purpose of this paper is to explain recent experiments [1, 2] on the electron spin echoes
(ESEs) in solids. In particular, the results on the power dependence of the irreversible phase
relaxation rate � = T −1

2 and its spectral properties [1], the existence of multiple echoes at high
applied fields [2] and the interrelation between these effects and the so-called instantaneous
diffusion (ID) effect [3] are of significant importance.

An important contribution to the phase relaxation in ESEs of solids is due to the dipole–
dipole interaction of the paramagnetic centres. Because of the many-particle nature of the
dipole–dipole interactions, satisfactory microscopic analysis of the relaxation and, hence, of
the echo phenomenon in general is impossible.
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For description of the transient phenomena in two-level (S = 1/2) systems excited by
a resonant field H1(t) = 2Hmw cos(ω1t), the phenomenological Bloch equations are widely
used. In the rotating reference frame (RRF) with frequency ω1, these equations are

u̇ + �v +
u

T2u
= 0,

v̇ − �u − χ w +
v

T2v

= 0,

ẇ + χ v +
(w − w0)

T1
= 0.

(1)

Here u and v are the components of the transition dipole moment in phase and out of phase with
H1(t); w is the population difference or, equivalently, the polarization with the equilibrium
value w0. (In magnetic resonance, alternatively, u, v and w are the components of the
magnetization.) For electron spins w0 = tanh(gβe H0/2kB T ), where g and βe are the g-
factor and the Bohr magneton of the electron respectively and H0 is the applied magnetic
field. In many cases, including EPR of solids, the resonance spectrum is inhomogeneously
broadened and the resonance frequency ω of the spins is distributed as f (ε = ω − ω0) around
the centre frequency ω0 = γ H0, where γ is the gyromagnetic ratio. Then equations (1)
refer to the generic homogeneous spin packet with frequency ω. Ordinary Bloch equations
(OBEs) properly (1) include two constant phenomenological relaxation parameters, T1 and
T2u = T2v = T2 = �−1, the power-independent tuning parameter � = ω−ω1 and the induced
Rabi frequency χ = γ Hmw. Besides �, we introduce detuning of the driving field from the
centre frequency �0 = ω1 − ω0. Obviously, ε = � + �0.

Experiments on transient nutations (TNs), free induction decay (FID) and echoes in
NMR [4], EPR [1, 2, 5, 6] and optics [7–10] of solids show that parameter T2 and frequency ω are
not constants but depend on the intensity of the excitation field. So, the Bloch equations (1)
should be properly modified by taking into account the power dependences of ω (H1) and
T2(H1).

A version of the modified Bloch equations (MBEs) was proposed in recent
publications [11, 12] and used to describe experiments on TN and FID in EPR [4, 5] and
applied to the theory of spectral hole burning (see also [13, 14]). In distinction to previous
theories on MBE (see, for example, [15–17]), where the non-Bloch behaviour of the transient
responses has been ascribed to the fluctuations of the resonance frequency ω0 of the active
centres and/or of the field source, in [11] the power dependence of ωand T2 is directly attributed
to the changes in the system of the active centres caused by the interaction with the coherent
excitation field. It was known long ago [18, 19] that the power dependence of T2 is different in
equations for u and v components of equations (1). While there is a more or less satisfactory
theory and expressions for T2u [18, 19], the meaning of T2v is not so clear. In [11, 12] the
power dependence of T2v was associated with the creation of the transverse components of the
magnetization by the excitation field. From experiments on the ESE [1] it follows, however,
that it is more realistic to refer this power dependence to the changes in the longitudinal
component of the magnetization.

The next section is devoted to the analysis of the power-dependent variations of ω and T2

introduced by the coherent excitation pulses in the inhomogeneously broadened system and
their relation to the ID mechanism. In section 3 we solve the Bloch equations modified in
such a way for a sequence of the two excitation pulses and obtain a general expression for the
two-pulse ESEs. In section 4 this general expression is analysed numerically as a function
of the various pulse parameters (the Rabi frequency χ , pulse length tp, interval between the
pulses τ ), of the applied field H0 and so on and the results of the calculations are compared
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with the experimental data. A brief discussion of our results and results of other publications
is given in section 5.

2. Power dependence of the MBE parameters and the ESE nonlinear mechanisms

The echo formation is a more complex and subtle phenomenon than the TN effect and/or FID
each taken separately. This is due to the fact that the echo is a coherent nonlinear response and
its formation, amplitude and decay properties strongly depend on the phase relations between
the pulses. The correct accounting for these relations is the main task of any echo theory.

The nonlinear mechanisms of ESE consist of

(i) the nonlinear excitation,
(ii) the nonlinear (intensity-dependent) dispersion and, possibly,

(iii) the nonlinear (intensity-dependent) damping in the system of the active centres.

The nonlinear excitation mechanism (i) is connected with the terms −χw and χv of
equations (1) nonlinear in the excitation field. Unlike the polarization echoes in piezoelectric
powders [20, 21], where the equation of motion for the elastic vibrations of the particle s(t)
contains both the strong linear piezoelectric force ∼β E(t) (β is the piezoelectric constant,
E(t) is the excitation electric field) and the nonlinear electrostriction force ∼E2s, equations (1)
do not contain the linear terms ∼χ ∼ H1(t).

The nonlinear dispersion mechanism (ii) is responsible for the multiple echoes and in the
system of dipoles is due to the demagnetizing field [4]. This mechanism is considered and
applied to the echo formation in the strongly homogeneous system (nuclear spins in solid 3He),
where the space inhomogeneity of the applied field H0 is created artificially by applying a
uniform field gradient G, in [4]. As a result, a sinusoidal modulation of the magnetization
along the gradient direction appears at the end of the second pulse. The demagnetizing
field corresponding to this magnetization generates a spatially sinusoidally modulated Larmor
frequency which acts on the transverse component M+ = u + iv. So, M+(t) after the pulses
consists of the infinite spatial Fourier components M+(k, t). It is shown [4] that at times
t = nτ (n = 2, 3, . . .) where τ is the time interval between the pulses, M+(t) becomes
uniform (k = 0) giving rise to the multiple echoes at those times.

In the case of the inhomogeneously broadened systems [1, 2] where the magnetization
all the time remains spatially uniform, the demagnetizing field works in a somewhat different
way and requires a special consideration. For this purpose, it is instructive to consider, even if
schematically, the time evolution of the spin system microscopically.

We take the spin Hamiltonian in the RRF of the form

H0 = h̄
∑

k

�k Skz + h̄
∑
i �=k

Aik Siz Skz (2)

where Aik = Aik(rik , θik) is the usual expression of the dipole–dipole interaction and
�k = ωk −ω1 is the resonance offset. During the short and strong mw pulses, the Hamiltonian
is

H = H0 + Hp ≈ Hp = h̄χp

∑
k

Skx (3)

where χp is the Rabi frequency of the pulse.
The transverse component of the magnetization of a particular spin packet in the RRF at

time t is given by

M j+(t) = gβe〈Sj+(t)〉 = gβeTr [ρ(t)Sj+] (4)
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where the density operator

ρ(t) = R(t)ρ(0)R−1(t) (5)

describes the evolution of the spin system during the echo-formation process. In the high
temperature approximation

ρ(0) ≈ 1 − h̄ω0

kB T

∑
k

Skz → − h̄ω0

kB T

∑
k

Skz . (6)

The evolution operator for the two-pulse echo sequence is

R(t) = R f 2(t − τ )Rp2 R f 1(τ )Rp1

Rpi = exp{−ih̄−1 Hiti } = exp

{
−iχi ti

∑
k

Skx

}
= exp

{
−i�i

∑
k

Skx

}

R f i(t) = exp{−ih̄−1 H0t}.

(7)

From equation (2) one can see that the equilibrium demagnetizing field operator is
Hd ∼ ∑

i Aik Siz . Equations (5) and (7) after the first pulse of flip angle �1 = χ1t1 give

Skz (t1) = Skz cos �1 − Sky sin �1 (8)

so the demagnetizing field for the free precession after the pulse is Hd(τ ) ∼ ∑
i Aik Siz cos �1.

Replacing in equation (2) Siz by Siz cos �1, from equation (7) one obtains for the free precession

Skz (t1, τ ) = Skz cos �1 − sin �1(Sky cos ψ1k − Skx sin ψ1k)

ψ1k = (�k + cos �1

∑
i �=k

Aki Siz)τ.
(9)

It is seen from (9) that the first pulse simply uniformly shifts the resonance spectrum by
δω(1) = (1 − cos �1)

∑
i Aik〈Siz〉. A similar consideration holds for the effect on the

demagnetizing field by the second pulse. The final expression for ρ(t) ∼ ∑
k Skz (t1, τ ,

t2, t − τ ) at time t from the beginning of the two-pulse sequence is given by

Skz (t1, τ, t2, t − τ ) = akz Skz + ak−Sk+e−i�k (t−τ) ak+ Sk−ei�k (t−τ)

akz = cos �1 cos �2 − sin �1 sin �2 cos φk

ak− =− i

2
[cos �1 sin �2 + sin �1 cos2(�2/2)eiφk −sin �1 sin2(�2/2)e−iφk ]; ak+ =a∗

k−

φk =
(

�k + 2 cos �1 cos �2

∑
i �=k

Aki Siz

)
τ

�k = �k + bkc cos �kτ + bks sin �kτ + bk0.

(10)

In obtaining the expression for φk we neglect terms ∼Siy . Furthermore, �k represents
the effect of the successive two-pulse excitation on the transition frequency of a kth spin
packet: bk0 contains terms that simply uniformly shift the resonance frequency and sums
of terms that are effectively averaged to zero; terms ∼bkc and ∼bks describe the desired
periodically modulated contributions to the transition frequency and actually represent the
nonlinear dispersion mechanism; we emphasize their locality in the frequency domain, that is
they depend on the frequency �k (and phase �kτ ) of the same spin packet under consideration
only. In the important particular case of �1 = π/2 one has bks = 0 and

bkc(�1 = π/2) = − sin �1 sin �2

∑
i �=k

Aki 〈Siz〉. (11)

As usual [4, 20], the Fourier expansion

exp[i(t − τ )bkc cos �kτ ] =
∞∑

n=−∞
in Jn[(t − τ )bkc] exp(in�kτ ) (12)
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with the Bessel functions Jn(x) as the Fourier coefficients leads, after the insertion of ρ(t)
into (4) and integration over the inhomogeneous distribution of the spin packets g(�), to the
multiple echoes at times t = nτ (n = 2, 3, . . .).

From equation (4) one sees that akz-term in (10) does not contribute to the transverse
magnetization. It is important for the three-pulse (stimulated) echoes not considered in this
paper.

The intensity-dependent damping (iii) due to the dipole–dipole interactions cannot be
described in the way given above for the nonlinear dispersion. Hence, we shall confine
ourselves to rather a qualitative discussion based on the experimental results [1].

Inasmuch as pulse duration ti 	 T2 [1, 2], during the pulses one can with sufficient
accuracy neglect the relaxation terms in equations (1). Thus, the damping described by the
parameter T2u is of no any importance in this approximation, as the free precession of both u
and v is governed by � = T −1

2v (χ) formed during the pulse. The decay rate �(1) after the first
pulse can be written as

�(1) = �0 + �(1)(χ1) (13)

where �0 represents the power-independent damping due to the interaction of the coherently
excited spins with the thermally excited ones. Its temperature dependence can be approximated
by [22]

�0 = �00(1 − w2
0)

1/2. (14)

The second term in (13) describes the power-dependent damping due to the interaction among
the coherently excited spins. For spins coherently excited by a short duration pulse this term
is effectively equal to zero at any time if the space distribution of the active centres is uniform;
then one has �(1) = �0.

We divide the spins excited by the second pulse into two groups with different phase
properties: n2 = n2ac + n2pas . Here n2ac represents the echo-forming (‘active’) spins excited
by both the pulses and the phase properties of which are described by formulae (10). There
arose the question of whether there is a nonlinear damping mechanism similar to the nonlinear
dispersion given by expression (10) for �k . In our opinion [11, 23], such a mechanism exists,
though this existence depends on the unclear role of the ‘active’ spins in the nonlinear damping.
Supposedly, however, as in the case of the polarization echoes in powders [21] and cyclotron
echoes in plasmas [24], it is of lesser importance than mechanisms (i) and (ii): for the pulses
of low intensity its contribution is small; at high powers the echo amplitude is dominated by
the increasing damping. So, below it is imagined that the spins of n2ac do not contribute to the
power-dependent damping and this mechanism is excluded from the consideration.

Group n2pas consists of the new spins excited during the second pulse and described by
equation (8) with index 2 instead of 1 there. It is obvious that these ‘passive’ spins do not
participate directly in the echo-formation process. They contribute, however, to the power-
dependent damping in the system of the ‘active’ spins. From experiments [1] it follows that
this contribution is proportional to the change in the polarization δw(t2) = w0 − 〈wpas(t2)〉
where 〈wpas(t2)〉 is the average polarization of the ‘passive’ spins at the end of the second
pulse. Hence, decay rate �(2) after the second pulse is

�(2) = �0 + �(χ2) = �0 + a�δw(t2). (15)

Note that the given division of the resonant spins into the two groups has nothing in
common with the known division [3] into the A (resonant) and B (nonresonant) spins where
the A spins are responsible for the ID effect while the B spins lead to the spectral diffusion
(SD) effect.
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3. Modified Bloch equation theory of ESE

Here we develop a simple theory of ESE in solids based on the MBEs which take into account
the results of mechanisms (ii) and (iii) of the preceding section. The solution of (1) at the end
of the first pulse is

u(t1) = w0χ1(ε − �0)(1 − cos �1)/�2
1

v(t1) = −w0χ1 sin �1/�1

w(t1) = w0[(ε − �0)
2 + χ2

1 cos �1]/�2
1

�2
1 = [(ε − �0)

2 + χ2
1 ] �1 = �1t1.

(16)

For the free precession between the pulses from equations (1) with parameters T2u = T2v = �−1
0

and � = ε − �0 + δω(1) we have

u(t1, τ ) = [u(t1) cos ψ1 − v(t1) sin ψ1]e−�0τ

v(t1, τ ) = [v(t1) cos ψ1 + u(t1) sin ψ1]e−�0τ

w(t1, τ ) = w(t1) . . . ψ1 = (ε − �0 + δω(1))τ

δω(1) = aω(w0 − 〈w(t1)〉) 〈w(t1)〉 =
∫ ∞

−∞
w(t1) f (ε) dε.

(17)

For τ 	 T1 here the longitudinal relaxation is neglected. Parameter aω ∼ ∑
i Aik .

The solution of equations (1) for the ‘active’ spins at the end of the second pulse is

u(t1, τ, t2) = �−2
2 {u(t1, τ )[χ2

2 cos2 ϕ + (χ2
2 sin2 ϕ + (ε − �0)

2) cos �2]

+ v(t1, τ )[χ2
2 sin ϕ cos ϕ(1 − cos �2) − (ε − �0)�2 sin �2]

+ w(t1, τ )χ2[�2 sin ϕ sin �2 + (ε − �0) cos ϕ(1 − cos �2)]}
v(t1, τ, t2) = �−2

2 {u(t1, τ )[χ2
2 sin ϕ cos ϕ(1 − cos �2) + (ε − �0)�2 sin �2]

+ v(t1, τ )[χ2
2 sin2 ϕ + (χ2

2 cos2 ϕ + (ε − �0)
2) cos �2]

+ w(t1, τ )χ2[−�2 cos ϕ sin �2 + (ε − �0) sin ϕ(1 − cos �2)]}
w(t1, τ, t2) = �−2

2 {u(t1, τ )χ2[(ε − �0) cos ϕ(1 − cos �2) − �2 sin ϕ sin �2]

+ v(t1, τ )χ2[(ε − �0) sin ϕ(1 − cos �2) + �2 cos ϕ sin �2]

+ w(t1, τ )[(ε − �0)
2 + χ2

2 cos �2]}
= c0 + c1e−�0τ cos[(ε − �0)τ − ϕ] + c2e−�0τ sin[(ε − �0)τ − ϕ]

c0 = w0(�1�2)
−2[(ε − �0)

2 + χ2
1 cos �1][(ε − �0)

2 + χ2
2 cos �2]

c1 = −w0
χ1χ2

�1�2
e−�0τ

[
sin �1 sin �2 − (ε − �0)

2

�1�2
(1 − cos �1)(1 − cos �2)

]

c2 = w0
χ1χ2

�1�2
e−�0τ

[
(ε − �0)

�2
sin �1(1 − cos �2) +

(ε − �0)

�1
(1 − cos �1) sin �2

]

�2
2 = (ε − �0)

2 + χ2
2 �2 = �2t2.

(18)

Here ϕ = ϕ2 − ϕ1 is the phase difference between the pulses. Small and, hence, insufficient
uniform contributions to the resonance frequency are neglected in (18). For free evolution of the
‘active’ spins after the second pulse in MBEs (1) we have parameters�(2) and � = ε−�0+δω(2)
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and solution

u(t1, τ, t2, t) = [u(t1, τ, t2) cos ψ2 − v(t1, τ, t2) sin ψ2]e−�(2)(t−τ)

v(t1, τ, t2, t) = [v(t1, τ, t2) cos ψ2 + u(t1, τ, t2) sin ψ2]e−�(2)(t−τ)

w(t1, τ, t2, t) = w(t1, τ, t2)
ψ2 = (ε − �0 + δω(2))(t − τ )

δω(2) = aac
ω (w0 − w(t1, τ, t2)) + a pas

ω (w0 − 〈wpas(t2)〉)
�(2) = �0 + a�δw(t2) = �0 + a�(w0 − 〈wpas(t2)〉)
〈wpas(t2)〉 =

∫ ∞

−∞
wpas(t2) f (ε) dε

wpas(t2) = w0[(ε − �0)
2 + χ2

2 cos �2]/�2
2.

(19)

In accord with the results of mechanism (ii) of the preceding section, δω(2) and, hence,
ψ2 contain the desired periodically modulated contribution to the resonance frequency from
the ‘active’ spins while term ∼a pas

ω leads to the uniform shift. Furthermore, term ∼a� in (19)
describes the important [1] power-dependent contribution to the decay rate from the ‘passive’
spins excited by the second pulse (see equation (15) above).

Observed echoes are given by

V (t1, τ, t2, t, χ1, χ2,�0, ϕ) ∼
∫ ∞

−∞
[u2(t1, τ, t2, t) + v2(t1, τ, t2, t)]1/2 f (ε) dε (20)

and can be examined as a function of any of the arguments shown in this formula. As a first
step, we may apply expansion (12) to cos ψ2 and sin ψ2. The substitution into u(t1, τ, t2, t) and
v(t1, τ, t2, t) and the integration over ε (20) leads to the echoes at times t = nτ (n = 2, 3, 4 . . .).
However, the general expression obtained in this way is a very complex expression and the
analytic evaluation of the echo properties presents large difficulties. On the other hand,
V (t1, τ, t2, t, χ1, χ2,�0, ϕ) can be easily examined numerically and successfully compared
with the experimental results.

4. Numerical calculations

4.1. Low field ESE

Our calculations are mainly connected with the decay properties of the echo [1]. As seen from
expression (20), the calculations need a specific expression for the inhomogeneous distribution
f (ε). Usually it is presumed as a Gaussian

f (ε) = (2π)−1/2σ−1 exp[−(ε − ε0)
2/2σ 2] (21)

though the distribution experimentally [1] obtained and used below is not symmetrical (full
curve in figure 1). Because of low values of the polarization in experiments [1] (w0 = 0.033 687
at 4.2 K) somewhat cumbersome expressions (16)–(19) are simplified. Indeed, δω(2) in (19)
is negligibly small, the nonlinear dispersion mechanism is insufficient and, hence, multiple
echoes at times t = 3τ, 4τ, . . . are not observable.

Moreover, in (14) we have �0 ≈ �00. Then from formulae (16)–(19) it follows that the
decay function of the 2τ echo is given by

V (t = 2τ ) = V0 exp(−�00τ − �(2)τ ) = V0 exp(−2�e f f τ )

�e f f = �00 +
a�

2
(w0 − 〈wpas(t2)〉).

(22)
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Frequency (MHz)

Figure 1. Inhomogeneous distribution of the spins f (ε). The full curve is the experimental
result [1] and the dotted curve is given by equation (21).
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Figure 2. Echo decay rate � as a function of the second pulse area �2. Dots are the
experimental values of � [1]; the full curve and the dotted curve are calculated from equation (20)
with the experimental and the Gaussian distributions f (ε) respectively. For all three cases
χ2 = 2π × 200 kHz. The dashed curve is for t2 = 5 µs and varying χ2.

That is, the echo decay is strongly exponential, but with the intensity-dependent decay rate
� = �e f f , in accordance with experiment [1]. Dots in figure 2 show the experimental values of
� as a function of the tilt angle �2 = χ2t2 obtained for constant value χ2 = χ1 = 2π×200 kHz,
t1 = 1.667 µs and varying t2 [1]. The full curve depicts the same dependence obtained from
expression (20) as V (τ ) with the use of the experimental function f (ε) given in figure 1. To
obtain this result, besides the above parameters the following values of the parameters were
used: �00 = 12.5 × 103 s−1, a� = 6.4 × 106 s−1.
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Figure 3. (a) Contributions of the u and v components to the multiple echoes; (b) the multiple
echoes in dB.

We have repeated the same calculations with f (ε) given by Gaussian (21) with the
parameters ε0 = 2 × 106 s−1, σ = 7.14 × 106 s−1 (see the dotted curve in figure 1) and
a� = 6.5 × 106 s−1; the result is given by the dotted curve in figure 2. Finally, we have
calculated directly �e f f as the function of �2 varying t2 with the use of the experimental
function f (ε); the result exactly coincides with the full curve, so it is not shown in figure 2.
All the results below in this section, unless otherwise noted, are obtained with the use of the
experimental function f (ε) only.

Note that �(�2) can be examined also as a function of χ2 with a given value of t2; an
example for t2 = 5 µs when �2 = 2π for χ2 = 2π × 200 kHz [1] is shown by the dashed
curve in figure 2. Since �e f f depends on χ2 not only through �2 (see (19) and (22)), the two
cases, �(�2, t2) and �(�2, χ2), give different dependences for �(�2) on �2.

The upper limit of parameter aac
ω in (19) representing the demagnetizing field and

responsible for the multiple echoes can be estimated as follows. Figure 3(a) shows the multiple
echoes V (t) (full curve) and the contributions of the u(t) (dotted curve) and v(t) (squares)
components obtained with the following values of parameters: χ1 = χ2 = 2π × 200 kHz,
τ = 5 µs, t1 = t2 = 1.25 µs (�1 = �2 = π /2), �00 = 12.5 × 103 s−1, a� = 6.4 × 106 s−1,
and aac

ω = 3 × 105 s−1. In figure 3(b) the same result is given in a semilogarithmic scale. It is
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Figure 4. The frequency dependence of the characteristic parameters x1 and x2 of the multiple
echoes (arguments of the Bessel functions) at low values of the applied field.

seen that the second echo is lower by 29 dB than the first echo which in the given conditions
(t1, t2 and τ 	 T2) has really a maximal value. Because experimentally the signal decay is
observed over a range of ≈30 dB [5], we conclude that 3 × 105 s−1 represents the upper limit
of aac

ω in [1]. The first echo and the third echo, poorly seen in figure 3(a), are due to v(t) while
the second echo is formed by u(t).

The characteristic parameters which govern the echo pattern and, in particular, are
responsible for the multiple echoes are the arguments of the Bessel functions Jn(x) in
equation (12) taken, say, at t − τ = τ = T2. From equations (18) and (19) it follows that the
arguments are x1 = aac

ω (t − τ )c1 and x2 = aac
ω (t − τ )c2. Note that in the homogeneously

broadened system [4] x1 ∼ c1 is the frequency-independent parameter (in [4] x1 ≈ 20 
 1)
and c2 = 0. In our case of the strongly inhomogeneous system x1 and x2 are frequency
dependent, as seen from equations (18) and (19) and shown in figure 4 for w0 = 0.0336 87,
χ1 = χ2 = 2π × 200 kHz, �1 = �2 = π/2, T −1

2 = �00 = 12.5 × 103 s−1 and
aac

ω = 3 × 105 s−1. Note that x1 is symmetric and x2 is asymmetric in ε; both the functions
undergo fast changes in the narrow central part of the inhomogeneous distribution f (ε) from
|x | ≈ 0.3 to zero; as a consequence of the small effective values of x1 and x2, the multiple
echoes are not observable.

The authors of [1] also investigate how different spin packets within the inhomogeneous
distribution contribute to the echo decay. For this purpose, the dependence of the decay rate
on the spectral position of the spins was examined by looking at the ESE decay after the same
�1 = �2 = 2π/3(χ1 = χ2 = 2π ×120 kHz) pulse sequence for different values of H0, i.e., of
the detuning �0 = ω1 − ω0. Symbols in figure 5 show the experimentally observed decay
picture for three values of the detuning while the full curves are obtained from the present
theory with the parameters �00 = 9.9 × 103 s−1, a� = 6 × 106 s−1. The theoretical values of
the decay rate, �(�H0 = 0) = 27.5 × 103 s−1, �(�H0 = −0.5 Oe) = 20.6 × 103 s−1 and
�(�H0 = +0.5 Oe) = 13.38 × 103 s−1, are in good agreement with the experimental results
(26 ± 1) × 103 s−1, (21 ± 1) × 103 s−1 and (12.8 ± 0.5) × 103 s−1, respectively. We also
obtain results very similar to those shown in figure 5 using, besides the above parameters, the
above-mentioned Gaussian distribution.
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Figure 6. The echo decay rate � (full curve) versus detuning �0, expressed in units of the Rabi
frequency χ = 2π × 120 kHz. The dotted curve is the inhomogeneous distribution of the spins
f (ε) (see figure 1).

Figure 6 shows the echo decay rate � = �e f f (full curve) versus detuning �0, investigated
in [1] as well. Parameters used in obtaining this figure are the same as for figure 5. One sees
that this dependence �(�0) is quite similar to the shape of the inhomogeneous distribution of
the spins f (ε) also shown by the dotted curve, in agreement with the experiment and theoretical
analysis in [1].

4.2. High field ESEs

The investigations of ESE at high applied fields and low temperatures where w0 ≈ 1 [2]
are very promising. In this case the nonlinear dispersion δω(2) is not negligible and may
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affect the echo behaviour; in particular, the echo decay can be not pure exponential. Also,
besides the dipole–dipole term (14), a contribution to the power-independent decay rate at high
fields increasing with temperature gives the spin–lattice interaction. We approximate the total
power-dependent decay rate after the second pulse �

(2)
t by

�
(2)
t = �00(1 − w2

0)
1/2 + �l0(1 − w2

0)/w0 + a�(w0 − 〈wpas(t2)〉) (23)

where �l0 refers to the spin–lattice interaction.
One of the results of [2] is the observation of a sequence of four two-pulse echoes. Figure 7

is an attempt to repeat this result with the parameters that presumably have been used in
experiments [2], w0 = 0.998 (T = 4.2 K, H0 = 215 kOe), χ1 = χ2 = (π/2) × 107 Hz and
�1 = �2 = π/2, and with the following parameters of the present theory: �00 = 3 ×105 s−1,
�l0 = 6 × 106 s−1, a� = 1 × 106 s−1, aac

ω = 2 × 106 s−1 and τ = 0.2 µs. The unknown
inhomogeneous distribution is taken as Gaussian (21) with ε0 = 0 and σ = 1 × 108 s−1.

It is seen from figure 7(a) that the first echo is due mainly to the v(t) component, the
secondary echo is formed by both components and the third echo is due mainly to the u(t)
component of the magnetization. Note, however, that the contributions of the components to
the secondary echoes complicatedly depend on the above parameters. Also, it is worth noting
that the fourth echo is less by 26 dB than the first one.

We should note that, in distinction to the low field echoes, at high fields the calculated echo
decay is not exponential and this is the consequence of the significant nonlinear dispersion
δω(2). Figure 8 shows calculated decay behaviour for the first (2τ ) and second (3τ ) echoes for
4.2 K. Only for larger values of τ (at the ‘tail’) does the decay becomes more or less exponential.
The influence of the nonlinear dispersion decreases with the increasing temperature and at
higher temperatures T > 7 K the decaying part is quite exponential. Figure 8 and other results
below are calculated with the same parameters given above but σ = 1 × 107 s−1.

The measured memory decay rate of the high field echoes strongly depends on temperature,
as shown by symbols in figure 9 for another sample [2]. Again, due to the nonlinear dispersion,
the calculated decay rate � (full curve in figure 9) at low temperatures is not equal to �e f f

(dotted curve in figure 9) given by

�e f f = �00(1 − w2
0)

1/2 + �l0(1 − w2
0)/w0 +

a�

2
(w0 − 〈wpas(t2)〉). (24)

Really the nonlinear dispersion works to increase the memory time T2. At higher temperatures
T > 7 K where its effectiveness is lowered, �(T ) and �e f f (T ) merge as is seen from the
figure.

In conclusion, we shall touch briefly on the characteristic parameters x1 and x2, responsible
for the multiple echoes, at high applied fields. The calculations similar to those performed
in the preceding subsection show that here we have the frequency dependence essentially of
the same form as shown in figure 4. In this case, however, x1 and x2 span a ten times (for
T = 4.2 K) broader frequency interval and their limiting values are larger (≈15) than at low
fields. Nevertheless, because of the fast variations, their effectiveness is less than in the case
of the homogeneous systems where x1 is independent of ε [4]. It is obvious from figure 4 that
parameter x1 symmetric in ε is more important for the multiple echoes than x2.

5. Discussion

5.1. Low field ESE

The experimental results of figures 2, 5 and 6 are theoretically discussed in [1] as well, and good
agreement similar to our calculations in those figures is achieved. The theoretical consideration



Theory of electron spin echoes in solids 10361

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

-0,2

0,0

0,2

0,4

0,6

0,8

1,0
(a)

  V(t)
  u(t)
  v(t)

V
(t

),
  u

(t
),

  v
(t

) 
(a

rb
.u

.)

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8
-50

-40

-30

-20

-10

0 (b)

V
(t

) 
(d

B
)

time (µs)

Figure 7. (a) Contributions of the u and v components to the high field multiple echoes; (b) the
multiple echoes in dB.

in [1] is based on the ID mechanism. By definition [3], the ID effect consists in the following:
a short rf pulse flips the A spins which causes a rapid (instantaneous) unbalance of transition
frequencies of the B spins (and of the A spins as well). The influence on the motion of the A
spins destructive in its nature introduced by a rapid B-spin reaction to this unbalance is termed
the ID effect.

The results of the experiments [1] show, however, that this effect is ineffective. That
is, the damping due to the large assembly of the B spins is not influenced by the pulses and
is given (in our notation) by decay rate �0 which is supposedly a characteristic of the SD
mechanism. So, the intensity-dependent damping can be related only to the excited spins
themselves. Experiments of [1] and, in particular, the dependence of � on �2 show that the
‘active’ spins do not have the resulting disturbing moment which affects these spins and, hence,
do not contribute to the echo decay. On the other hand, it is clear that the local fields of the
‘passive’ spins at the sites of the ‘active’ spins have such nonzero moments which leads to the
echo decay. It is clear also that this decay rate depends on the amplitude of the transverse (u,
v) components of the ‘passive’ spins, that is on the excitation field. Since the decay rate is
constant during the free evolution (for τ 	 T1) while u(t) and v(t) are oscillatory even in RRF
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(for ε �= 0), the decay rate is expressed through the change of the longitudinal component of
the Bloch vector w(t): � ∼ w0 − 〈wpas(t2)〉, as follows from the experiment [1].

The decay rate after the second pulse �(2) in [1] and here is given by one and the same
expression (15). However, the physical meaning of the damping mechanism as described in [1]
is essentially different from that given in sections 2 and 3 and above in this section. In [1] there
is no discrimination between the ‘active’ and ‘passive’ spins excited by the second pulse and
〈w(t2)〉 in the expression for δw(t2) intuitively implies the average over the inhomogeneous
distribution of the polarization of the ‘active’ spins (in our terminology above). In the present
paper, this decay is caused by the ‘passive’ spins excited during the second pulse.

We hope that some light was shed by the results of sections 2 and 3 and the present
discussion on the understanding of the ID and SD mechanisms.

Unlike the ineffective ID effect, there is another one also initiated by the excitation pulses
and in this sense ‘instantaneous’, which we shall term an active spin frequency modulation
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(ASFM) effect. It is caused by the ‘active’ spins and described by the expressions for �k

in (10) and for δω(2) in (19). In distinction from the incoherent ID effect, the ASFM effect
is a consequence of the successive action of the two excitation pulses. The main feature of
this effect is that it directly connects the frequency unbalance of a kth ‘active’ spin with the
well defined phase properties of the same kth spin. As shown above, this effect represents the
new nonlinear mechanism of the multiple echo formation, the intensity-dependent dispersion
mechanism.

We have also shown how the distribution of the resonance frequency influences
(negatively) the formation of the multiple echoes.

The results of sections 2 and 3 permit us to obtain further insight into the time decay
of the TN and FID [5, 6, 11]. The important statement in [11] is that the power-dependent
decay of TN and/or FID is caused by the interaction of the generic coherently excited spin with
the fields of other also coherently excited spins. This statement is the opposite to that in the
previous publications where the non-Bloch (power-dependent) behaviour has been ascribed to
the fluctuations of the resonance frequency of the active centres and/or of the field source.

The arguments about the properties of the ‘active’ and ‘passive’ spins remain valid also
for TN and FID. The TN process consists of the many decaying Rabi oscillations during which
the mw field excites the spins of the very different mutual phases; as a consequence, we again
have the nonzero local fields and the power-dependent decay. The above is operative for the
steady-state prepared FID as well. Of course, such peculiarity as the different role of T2u in
TN and in FID [11] remains in force.

Already it has been said in the introduction and confirmed by the calculations that
it is more correct to refer the power-dependent damping of the echo to the changes in
the longitudinal component of the magnetization than to its transverse components. This
conclusion, apparently, is valid for TN and FID. It is pertinent to say that TN, FID and hole
burning are less subtle processes than the echo as they do not contain the division to active
and passive spins with their subtle dispersion and damping properties and the phase reversal
important for echoes. In particular, the FID decay is described by the power-dependent decay
rate �2v which is constant during the decay process without respect to whether it caused by the
changes in the longitudinal component or in the transverse components. To show that the FID
is correctly described by equation (15) of [11], if �2v = T −1

2v (χ) is defined by equation (15) in
this paper where δw(t2) = w0 −〈w(t2)〉 and 〈w(t2)〉 is the average polarization at the end of the
steady-state preparation, we have recalculated the Rabi frequency dependence of the FID rate.
The result is shown in figure 10 by the open diamonds together with the previous calculated
result [11] (open circles) obtained with �2v expressed through the transverse components of
the Bloch vector. There is good agreement between the present result, the previous one and that
obtained experimentally by Boscaino and La Bella [5] (solid triangles). The theoretical results
for the FID rate [5, 7] following from the OBE (solid squares) and from the Redfield theory
(solid circles) are also shown in the figure. In obtaining this result, the following values of
parameters from [11] were used (compare with those in [11] where the average of the transverse
components is defined in a different way than in (17) and (19) above): aω = 5×107 cm−3 s−1,
a� = 3.8 × 107 cm−3 s−1, r2 = 1 × 10−8 s2 and σ = 2π × 0.25 MHz with the same values
of T1 and T2 as given in [11].

5.2. High field ESEs

Previous theories of ESEs in solids cannot explain the existence of the multiple echoes at
high applied fields, as it does the present theory. Since the multiple echoes are due to the
ASFM effect, they permit us to estimate the nonlinear dispersion parameter aac

ω , that is
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Figure 10. Calculated FID rate, �/2π , versus Rabi frequency, χ/2π , for sample no 1 of [5]:
open circles and open diamonds are for �2v expressed through the transverse [11] and longitudinal
components (present work) of the Bloch vector respectively. Solid triangles are experimental data
of Boscaino and La Bella [5]. Solid squares and solid circles are the theoretical dependences
expected from the OBE theory [5] and from the Redfield theory [7] respectively.

the demagnetizing field in the sample. Hence, the echoes depend on the sample form and
orientation relative to the applied field.

Due to the ASFM effect, the echo decay is not exponential as is seen from figure 8. In terms
of the Bessel functions Jn(x1), Jm(x2), the echoes are described by the complicated expression
containing the sum over n, m of products Jn(x1)Jm(x2). At times τ � T2, where |x1| > 1 and
|x2| > 1, the τ -dependence of the echoes is governed by the oscillatory behaviour of the Bessel
functions. For τ 
 T2 one has x1,2 	 1 and V (2τ ) ∼ J1(x1)J0(x2) ∼ x1 ∼ exp(−2τ/T2),
that is an exponential decay for large τ . Note that the nonexponential decay is characteristic
for any echoes with significant contribution from the intensity-dependent dispersion and/or
damping [4, 20, 21, 24]. We hope that the theory described in sections 2 and 3 can help in
further experiments on the high field echoes and their explanation.

5.3. Photon echoes in solids

Several important properties of the photon echoes in solids are similar to those of the ESEs:
both cases need the applied magnetic field, have approximately the same memory decay rates,
which decrease with increasing field [2, 25] if spin–spin interactions control the dephasing,
and so on. The intensity-dependent frequency shift and decay rates for photon echoes in solids
were observed [8–10] and ascribed to the ID mechanism through the magnetic dipole–dipole
interactions of the active centres [9] In these and in other following publications, however,
the conclusion about the power-dependent decay rate is again deduced, as in [1], from the
averaging of the polarization of the ‘active’ centres.

In our opinion, the division of the centres excited by the second light pulse into the ‘active’
and ‘passive’ ones is correct for the photon echoes as well; the power-dependent decay rate
of the photon echoes in solids is then caused by the spin polarization of the ‘passive’ centres
while the ‘active’ centres serve as the origin of the nonlinear mechanism for multiple photon
echoes.
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6. Conclusion

It is well known that the OBEs with power-independent relaxation and tuning parameters fail
to explain ESEs in solids. We presented a modified version of the Bloch equations (MBEs)
with specific power-dependent relaxation and dispersion parameters characteristic for two-
pulse excitation and when the magnetic dipole–dipole interactions in the system control the
dephasing. We have found that the first and second pulses vary the parameters in different ways,
so the free evolution of the spins between the pulses and after the second pulse is governed by
MBEs with essentially different parameters.

A crucial point here is the division of the spins excited by the second pulse into the ‘active’
(excited by both pulses and forming the echo signals) and ‘passive’ (excited by the second pulse
only) ones with their essentially different contributions to the power-dependent relaxation and
dispersion. It is shown that the ‘active’ spins participate in a new effect, an ASFM effect giving
rise to the power-dependent dispersion and multiple ESEs; the ‘passive’ spins contribute to the
power-dependent relaxation.

These equations are solved and a general expression for the two-pulse ESEs is obtained.
Detailed numerical analysis of this expression gives results in good quantitative agreement
with the recent experiments [1] on the two-pulse ESEs at conventional low applied fields.
From the experiments [1] on the echo decay it is found that the ID effect [3] is ineffective.
Also, the developed theory is applied successfully to multiple ESEs at high fields, which are
promising for future investigations [2].
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